نامساوی هادامارد برای توابع لگاریتم محدب
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
- author عاطفه دهدست
- adviser رحمت الله لشکری پور
- Number of pages: First 15 pages
- publication year 1390
abstract
در این پایان نامه تابع محدب و همچنین توابعی از نوع محدب مانند m - محدب و (a,m) - محدب و s - محدب و از قبیل این توابع به خصوص توابع لگاریتم محدب را معرفی می ناماید و به اثبات نامساوی هادامارد برای این توابع می پردازد.
similar resources
بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها
در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده است. در پایان نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.
full textرده بندی توابع محدب با استفاده از نامساوی هرمیت-هادامارد
توابع محدب یکی از مهمترین توابع در ریاضیات می باشند.رده بندی این نوع توابع اهمیت ویژه ای دارد و ریاضیدانان زیادی در این زمینه مشغول به مطالعه و تحقیق هستند.در این رساله ابتدا تعاریف و قضایای مقدماتی مطرح می شود.سپس به رده بندی توابع یک متغیره ی محدب روی بازه های باز با استفاده از نامساوی هرمیت هادامارد پرداخته می شود.در ادامه به رده بندی توابع چند متغیره ی محدب روی زیر مجموعه های rn می پردازیم.
15 صفحه اولنامساوی هرمیت- هادامارد برای توابع چند متغیره
باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و ج...
15 صفحه اولنامساوی های نوع هرمیت - هادامارد برای تابع h-محدب
نامساوی هرمیت-هادامارد یکی از نامساوی های مهمی است که توجه بسیاری از ریاضیدانان را به خود جلب کرده است. در این رساله ابتدا این نامساوی را برای تابع محدب بررسی می کنیم. سپس نامساوی هرمیت-هادامارد را برای برخی توابع محدب و شبه محدب دیفرانسیل پذیر ارائه می دهیم و کاربردهایی از میانگین های خاص را بیان می کنیم. به علاوه این نامساوی را برای تابع s-محدب نیز بررسی می کنیم، در ادامه پس از یک مطالعه ی گس...
نامساوی های نوع هرمیت-هادامارد برای توابع عملگرمحدب
دراین رساله, پس از بیان مقدمه ای کوتاه در مورد نامساوی مشهور هرمیت-هادامارد برای توابع محدب, قصد داریم مدلی عملگری از این نامساوی برای توابع عملگرمحدب ارائه دهیم. برای این منظور, ابتدا به تعاریف و قضایایی مقدماتی نیاز داریم که در فصل اول به آن ها پرداخته ایم. سپس در ادامه, ویژگی هایی از عملگرها را در فضاهای هیلبرت بیان می کنیم. پس از این مقدمات, نامساوی هرمیت-هادامارد را برای توابع محدب از عملگ...
نامساوی پوپویچی برای توابع ماتریسی با توان منفی
در این مقاله، با استفاده از مقادیر ویژه ماتریسها و نامساوی عددی پوپویچی، این نامساوی برای اثر ماتریسهای مثبت بیان شده است. به علاوه، با در نظر گرفتن توابع ماتریسی با توان منفی، نامساویهای ماتریسی از نوع پوپویچی به دست آمده است. نتایج به دست آمده در این مقاله، معکوس نامساویهای ماتریسی شناخته شده هستند.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023